#### **Key Features**



- 50 Ohm Impedance
- 0.5 ~ 3.8 GHz
- 1.20 dB Noise Figure
- 43.0 dBm Output IP<sub>3</sub>
- 35.0 dB Gain
- 27.0 dBm P<sub>1dB</sub>
- 1.5:1 VSWR
- Single Power Supply
- >64 years MTBF
- **Unconditional Stable**
- **RoHS** Compliant

# **Product Description**

WP-6 Gold plated housing.

standard of MIL-STD-202g.

WBPA0538A is integrated

proprietary power amplifier technology, high

frequency micro electronic assembly techniques,

and high reliability design to realize optimum low

noise figure, wideband, high linearity, and

unconditional stable performances together. With

single +10.0V DC operation, the amplifier has

optimal input and output matching in the specified

frequency range at 50-Ohm impedance system.

The amplifier has standard SMA connectorized

The amplifier is designed to meet the rugged

CAUTION: Ŧ ELECTROSTATIC DISCHARGE SENSITIVE WanTcom

with

## Applications

- Mobile Infrastructures
- GPS
- PCS & 3G •
- Defense
- Security System
- Measurement
- **Fixed Wireless**



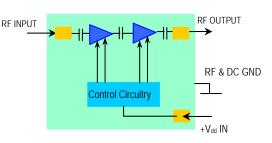
### **Specifications**

Summary of the electrical specifications WBPA0538A at room temperature


| Index | Testing Item                          | Symbol               | Test Constraints                                          | Min | Nom     | Max    | Unit  |
|-------|---------------------------------------|----------------------|-----------------------------------------------------------|-----|---------|--------|-------|
| 1     | Gain                                  | S <sub>21</sub>      | 0.5 – 3.8 GHz                                             |     | 35      |        | dB    |
| 2     | Gain Variation                        | ΔG                   | 0.5 – 3.8 GHz                                             |     | +/- 1.0 | +/-1.5 | dB    |
| 3     | Input VSWR                            | SWR <sub>1</sub>     | 0.5 – 3.8 GHz                                             |     | 1.5:1   | 2:1    | Ratio |
| 4     | Output VSWR                           | SWR <sub>2</sub>     | 0.5 – 3.8 GHz                                             |     | 1.5:1   | 2:1    | Ratio |
| 5     | Reverse Isolation                     | S <sub>12</sub>      | 0.5 – 3.8 GHz                                             |     | 60      |        | dB    |
| 6     | Noise Figure                          | NF                   | 0.5 – 3.8 GHz                                             |     | 1.2     | 1.5    | dB    |
| 7     | Output Gain 1dB Compression Point     | P <sub>1dB</sub>     | 0.5 – 3.8 GHz                                             | 24  | 27      |        | dBm   |
| 8     | Output-Third-Order Interception Point | IP <sub>3</sub>      | Two-Tone, P <sub>out</sub> +10 dBm each, 1 MHz separation | 38  | 43      |        | dBm   |
| 9     | DC Current Consumption                | l <sub>dd</sub>      | V <sub>dd</sub> = +10 V                                   |     | 300     |        | mA    |
| 10    | DC Power Supply Voltage               | V <sub>dd</sub>      |                                                           | +9  | +10     | +11    | V     |
| 11    | Thermal Resistance, Junction to case  | R <sub>th,c</sub>    | Last stage transistor, $V_{ds}$ = 9.5V, $I_{ds}$ = 150 mA |     |         | 45     | °C/W  |
| 12    | Operating Temperature                 | To                   |                                                           | -40 |         | +85    | °C    |
| 13    | Maximum Input CW RF Power             | P <sub>IN, MAX</sub> | DC – 6.0 GHz                                              |     |         | 10     | dBm   |

## **Absolute Maximum Ratings**

| Parameters                                      | Units | Ratings   |  |
|-------------------------------------------------|-------|-----------|--|
| DC Power Supply Voltage                         | V     | 12        |  |
| Drain Current                                   | mA    | 500       |  |
| Total Power Dissipation                         | W     | 3.5       |  |
| Input CW RF Power                               | dBm   | 10        |  |
| Junction Temperature                            | °C    | 170       |  |
| Storage Temperature                             | °C    | -55 ~ 125 |  |
| Operating Temperature                           | °C    | -40 ~ 85  |  |
| Thermal Resistance, Last Stage Transistor, Rth. | °C/W  | 45        |  |

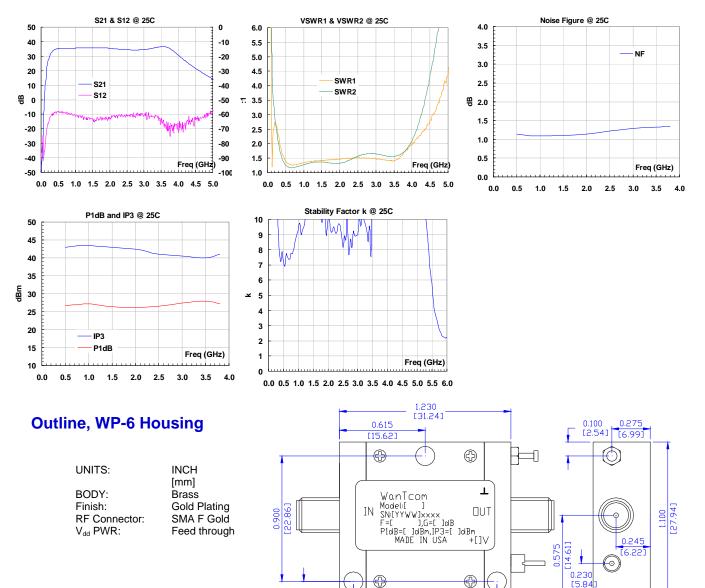

Operation of this device above any one of these parameters may cause permanent damage.

## **Ordering Information**



**WBPA0538A** 

## **Functional Block Diagram**




! Additional heat sink required for continuous operation!

Specifications and information are subject to change without notice.



# **Typical Data**



0.100

[2.54]

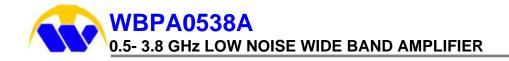
1.030

[26.16]

Specifications and information are subject to change without notice.

0.100

[2.54]


[5.84

0.410

[10.41]

0.100

[2.54]



#### **Application Notes:**

#### A. SMA Torque Wrench Selection

Always use a torque wrench with  $5 \sim 6$  inch-lb coupling torque setting for mating the SMA cables to the amplifier. Never use torque more than 8 inch-lb wrench for tightening the mating cable to the connectors. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

#### **B. DC Power Line Connection**

Strip the insulation layer at the end of DC power supply wire. The stripped length should be around  $0.100^{\circ}$  to  $0.200^{\circ}$ . The 24 ~ 26 American Wire Gauge wire is suitable. Wound the stripped wire about 3/4 to 1 turn on the DC feed thru center pin. Solder the wounded wire and the center pin together. Clean the soldering joint by a Q-tip with alcohol to remove the flux and residue.

Do not use large soldering iron tip with more than 750 degree Fahrenheit to solder the wire and feed thru pin. Damage may occur to the feed thru. 0.010" size tip with 750 degree Fahrenheit temperature setting is suitable for the soldering works.

Repeat the process to solder the DC return wire on the ground turret. Higher temperature and larger tip can be used for this ground soldering.

#### C. Mounting the Amplifier

Use three pieces of #4-40 with longer than 9/16" screws for mounting the amplifier on a metal-based chase. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount them.

High thermal conductivity thermal film such as T-gon is needed between the bottom of the PA and the heat sink surface. Refer to AN-155 for heat sink design, <u>http://wantcominc.com/engineering\_tools.htm</u>.

\*\*\*\*\*

Specifications and information are subject to change without notice.