

Rev. V1

Features

- Positive Gain Slope
- High Gain: 13.5 dB @ 18 GHz
- P1dB: 28.5 dBm @ 18 GHz
- P_{SAT}: 30.5 dBm @ 18 GHz
- Output IP3: 47 dBm @ 18 GHz
- Bias Voltage: V_{DD} = 10 V
- Bias Current: I_{DSQ} = 500 mA
- 50 Ω Matched Input / Output
- Temperature Compensated Output Power Detector
- Lead-Free 5 mm 32-lead AQFN Package
- RoHS* Compliant

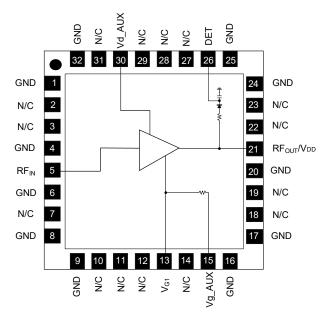
Applications

· Test & Measurement, EW, ECM, and Radar

Description

The MAAP-011327 is a 1 W distributed power amplifier offered in a lead-free 5 mm 32-lead AQFN package. The power amplifier operates from 0.001 to 22 GHz and provides 13.5 dB of linear gain and 30.5 dBm of output power at saturation. The device is fully matched across the band and includes a temperature compensated output power detector.

The MAAP-011327 can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for test and measurement, EW, ECM, and radar applications.


This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

Ordering Information¹

Part Number	Package
MAAP-011327-TR0500	500 Piece Reel
MAAP-011327-TR1000	1000 Piece Reel
MAAP-011327-SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration^{2,3}

Pin#	Pin Name	Description
1, 4, 6, 8, 9, 16, 17, 20, 24, 25, 32	GND	Ground
2, 3, 7, 10 - 12, 14, 18, 19, 22, 23, 27 - 29, 31	N/C	No Connection
5	RFIN	RF Input
13	V _{G1}	Gate Voltage
15	Vg_AUX	Auxiliary Gate
21	RFout/Vdd	RF Output / Drain Voltage
26	DET	Power Detector
30	Vd_AUX	Auxiliary Drain

- MACOM recommends connecting all no connection pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

1

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAAP-011327 Rev. V1

Electrical Specifications: T_A = +25°C, V_{DD} = 10 V, I_{DSQ} = 500 mA, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	2 GHz 10 GHz 18 GHz 22 GHz	dB	 11.0 11.5 12.5	13.0 13.0 13.5 14.5	_
P _{SAT}	P _{IN} = +24 dBm 2 GHz 10 GHz 18 GHz 22 GHz	dBm	I	32.0 31.5 30.5 31.0	_
P1dB	2 GHz 10 GHz 18 GHz 22 GHz	dBm	 28.0 26.5 25.5	28.5 29.0 28.5 27.5	-
OIP3	P _{OUT} = +18 dBm/tone (10 MHz Tone Spacing) 2 GHz 12 GHz 18 GHz 22 GHz	dBm	_	45.0 45.0 47.0 39.5	_
PAE	P _{IN} = +22 dBm 2 GHz 12 GHz 18 GHz 22 GHz	%	_	27.5 24.5 19.5 19.5	
NF	10 GHz 18 GHz 22 GHz	dB	_	3.0 3.5 3.75	_
Input Return Loss	P _{IN} = -20 dBm	dB	_	12	_
Output Return Loss	P _{IN} = -20 dBm	dB	_	12	_
I _{DD} (with RF drive)	P _{IN} = +23 dBm	mA	_	600	_
I _{G1} (with RF drive)	P _{IN} = +23 dBm	mA	_	-0.1	_

Rev. V1

Maximum Operating Ratings

Parameter	Rating
Input Power	24 dBm
Drain Voltage	+12 V
Junction Temperature ^{6,7}	+150°C
Operating Temperature	-40°C to +85°C

- Operating at nominal conditions with junction temperature ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.
- 7. Junction Temperature (T_J) = $T_C + \Theta_{JC} * ((V * I) (P_{OUT} P_{IN}))$ Typical thermal resistance (Θ_{JC}) = 14.0°C/W. a) For T_C = +85°C and 22 GHz.
 - T_J = +146°C @ 10 V, 0.5 A, P_{OUT} = 28.5 dBm, P_{IN} = 18 dBm

Biasing Conditions

Recommended biasing conditions are V_{DD} = 10 V, I_{DSQ} = 500 mA (controlled with V_{G1}).

 V_{DD} bias must be applied through a resonant free high inductance on the RF output line.

Bypass capacitors C1 and C2 for the auxiliary pads are required for a low frequency operation extension (below 1 GHz).

Absolute Maximum Ratings^{8,9}

Parameter	Absolute Maximum
Input Power	30 dBm
Drain Voltage	+13 V
Gate Voltage	-2 to 0 V
Junction Temperature ¹⁰	+175°C
Storage Temperature	-65°C to +125°C

- 8. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

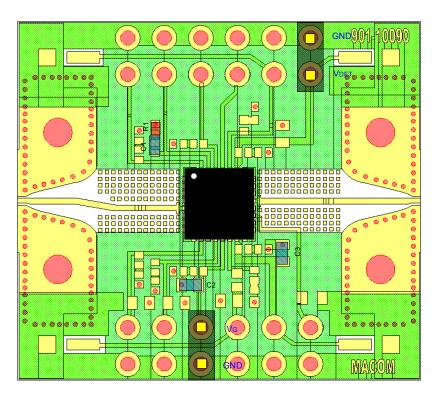
Please observe the following precautions to avoid damage:

Static Sensitivity

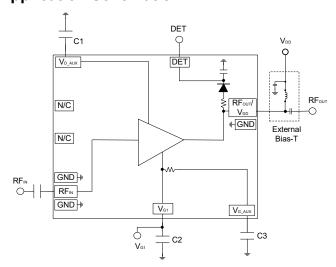
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 2 and CDM Class C3 devices.

Operating the MAAP-011327 Turn-on

- 1. Apply V_{G1} (-1.5 V).
- 2. Increase V_{DD} to 10 V.
- Set I_{DSQ} by adjusting V_{G1} more positive (typically -0.8 V for I_{DSQ} = 500 mA).
- 4. Apply RF_{IN} signal.


Turn-off

- 1. Remove RF_{IN} signal.
- 2. Decrease V_{G1} to -1.5 V.
- 3. Decrease V_{DD} to 0 V.



Rev. V1

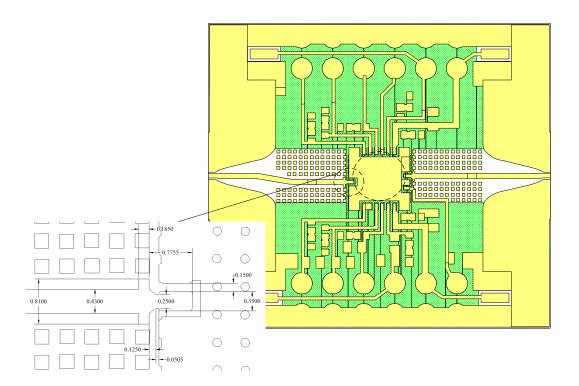
Sample Board Layout

Application Schematic

Parts List

Part	Value	Case Style
C1 - C3	0.1 μF	0402
R1	0 Ω	0402

Sample Board Material Specifications


Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Dielectric Layer: Rogers RO4003C 0.203 mm thickness Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Finished overall thickness: 0.238 mm

Rev. V1

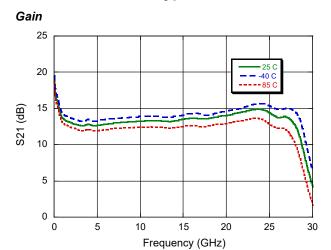
Recommended PCB Layout Detail:

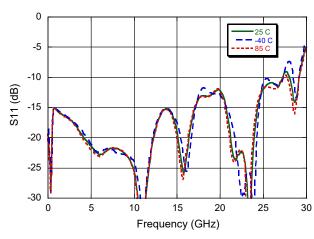
The RF input and output pre-matching circuit patterns are identical and are designed to compensate packaging effects. Transmission line dimensions apply to a PCB with 0.203 mm thick Rogers RO4003C laminate dielectric. Performance curves shown in this data sheet were measured with these circuit patterns.

Recommended PCB Information

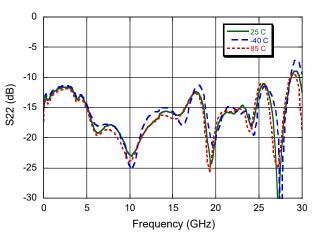
RF input and output are 50 Ω transmission lines on single layer 8 mil Rogers RO4003C with 1/2 oz. Cu. Use copper filled vias under ground paddle. Do not use copper paste as the thermals will cause over heating.

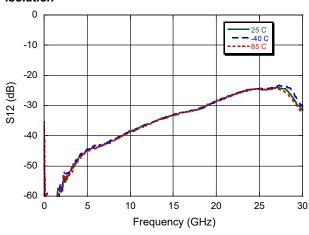
Grounding and Thermal Vias

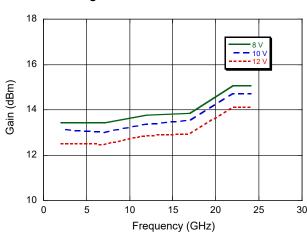

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8 mil (200 $\mu m)$ diameter vias under the device, assuming an 8 mil (200 $\mu m)$ thick RF layer to ground. For best thermal management, use as many copper filled vias as physically possible. 0.3 mm diameter in a 9 x 9 array are shown here.


Rev. V1

Typical Performance Curves V_{DD} = 10 V, I_{DSQ} = 500 mA, V_{G1} = -0.8 V typical

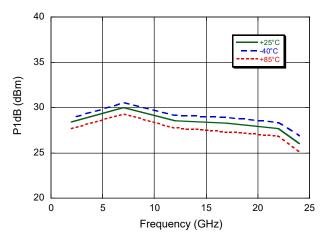

S-Parameters 30 20 (BD) 10 -20 -30 0 5 10 15 20 25 30 Frequency (GHz)

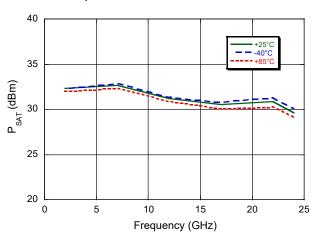

Input Return Loss


Output Return Loss

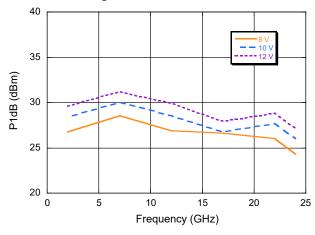
Isolation

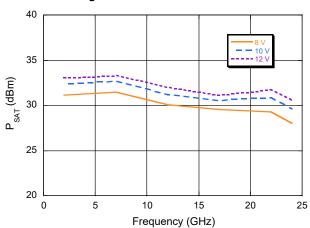
Gain over Voltage

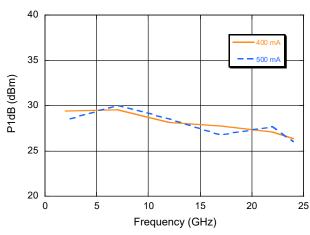


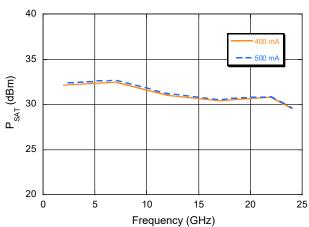

Rev. V1

Typical Performance Curves V_{DD} = 10 V, I_{DSQ} = 500 mA, V_{G1} = -0.8 V typical

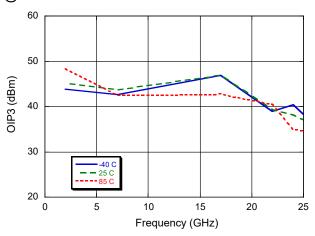

P1dB over Temperature

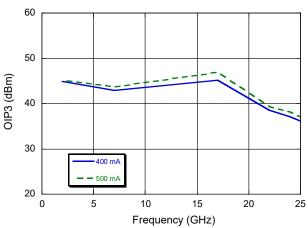

P_{SAT} over Temperature


P1dB over Voltage

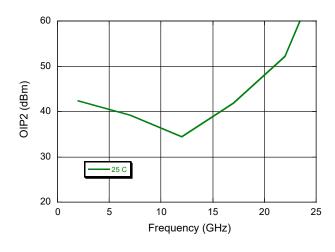

PSAT over Voltage

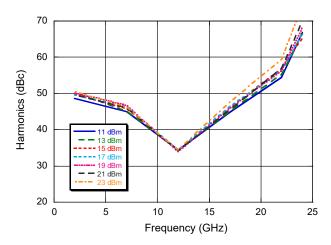
P1dB over Current

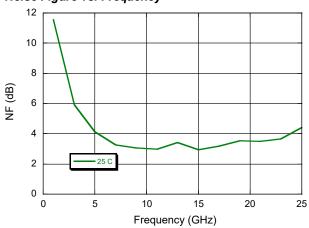

PSAT over Current



Rev. V1

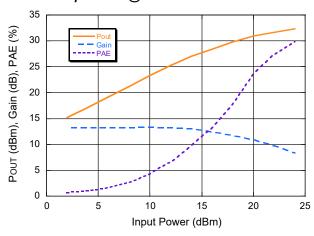

Output IP3 vs. Frequency over Temperature @Po=18dBm/tone

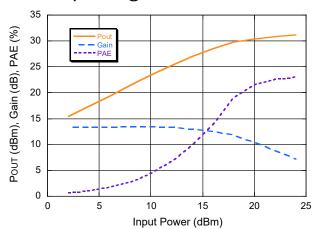

Output IP3 vs. Frequency over Drain Current @Po=18dBm/tone


Output IP2 vs. Frequency @Po=18dBm/tone

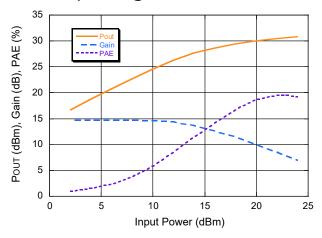
2nd Harmonic level vs. Frequency over Output Power

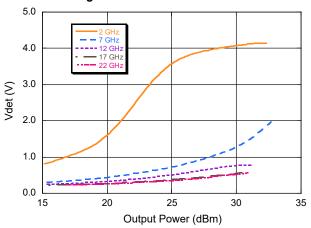
Noise Figure vs. Frequency

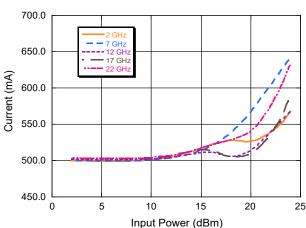



Rev. V1

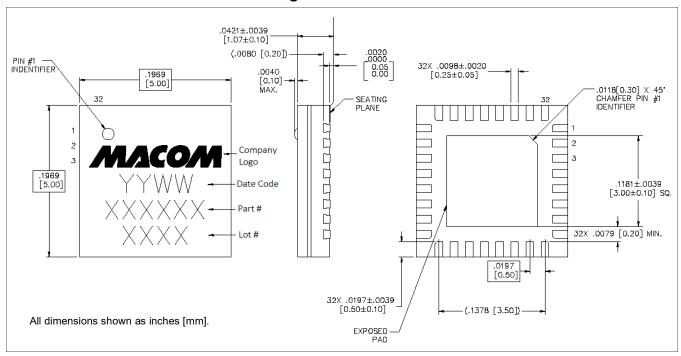
Typical Performance Curves V_{DD} = 10 V, I_{DSQ} = 500 mA, V_{G1} = -0.8 V typical


Power Compression @ 2 GHz


Power Compression @ 12 GHz


Power Compression @ 22 GHz

Detector Voltage vs. Pout


Current

Rev. V1

Lead-Free 5 mm 32-lead AQFN Package[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu.

Power Amplifier, 1 W 0.001 - 22 GHz

MAAP-011327

Rev. V

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.