Designing with UnitedSiC FETs

Pete Losee
Manager Device Technology Development
December 2018

Contents

- Introduction to the UnitedSiC FET portfolio
- General Gate Drive Guidelines
- Using snubbers to manage switching waveforms
- Benefits of packages with Kelvin connections
- UnitedSiC FET User Guide
- Tips for paralleling TO packages

SiC Application Growth

Server \& Datacenter

Lab \& Din Rail PSU

Lighting \& Electronic Ballast

Battery Charging

Electric Vehicles

Renewable Energy \& Storage

Key Features

UnitedSIC

12V/OV Operation Simplifies Upgrading

UJ3C \& UF3C Series, 650/1200V SiC FETs

Key Features

- Excellent body diode performance (Vf < 2V)
- Drive with any Si and/or SiC gate drive voltage
- High performance cascode configuration
- Superior thermal performance
- Integrated ESD and gate protection
- Kelvin package (UF3C Fast series)

Innovative cascode configuration enables Si and SiC gate voltage compatibility

Superior Gate and ESD Protection

Integrated clamping diode protects gates from $|25 \mathrm{~V}|$ and adds ESD protection

UnitedSiC Product Portfolio

UF3C performance benefits

1200V Devices	UJ3C120040K3S	UF3C120040K3S
Qrr $\left(150^{\circ} \mathrm{C}\right)$	482 nC	289 nC
$\operatorname{Rds}(o n)$	35 mohm	35 mohm
$\operatorname{VF}(20 \mathrm{~A})$	1.5 V	1.5 V

- Lower losses for higher frequency switching circuits, especially where hard switching at turn-on is needed
- No changes to thermal resistance or current ratings

UF3C FAST SiC FETs in 4-lead kelvin connected package

All the benefits of UnitedSiC SiC FETs

PLUS

- Extremely fast switching
- Lowest switching losses
- Clean gate waveforms
- No false triggering

Turn-off Waveforms
-

- UF3C120040K3S: $E_{\text {off }}=208 \mu \mathrm{~J}$
- UF3C120040K4S: $E_{\text {off }}=170 \mu \mathrm{~J}$

Turn-on Waveforms

- UF3C120040K3S: $E_{o n}=1300 \mu \mathrm{~J}, \mathrm{di} / \mathrm{dt}=3800 \mathrm{~A} / \mu \mathrm{s}$
- UF3C120040K4S: $\mathrm{E}_{\text {on }}=845 \mu \mathrm{~J}$, di/dt $=7100 \mathrm{~A} / \mu \mathrm{s}$

General Gate Drive Guidelines

- UnitedSiC cascode FET Vth=5V
- Vgsmax $=+/-25 \mathrm{~V}$
- Gate drive 0 to 12 V is best, especially in ZVS applications
- No issues with negative gate drive. Any voltages +/-20V may be used with the right Rg changes
- Devices are compatible with a wide range of gate drives and gate drive ICs - both Si MOS/IGBT drivers as well as newer SiC MOSFET drivers
- Also compatible with simple gate drive transformers

Drop-in Functionality Without Changing Gate Drive Voltage
(Replaces Si IGBTs, Si FETs, SiC MOSFETs or Si Superjunction Devices)

12V/OV Operation Simplifies Upgrading

Innovative cascode configuration enables Si and
SiC gate voltage compatibility

Superior Gate and ESD Protection
 from $|25 \mathrm{~V}|$ and adds ESD protection

Cascode switching and gate charge

Figure 8 Typical gate charge
at $V_{D S}=800 \mathrm{~V}$ and $I_{D}=40 \mathrm{~A}$

Cascode Internal Operation

Turn On
MOSFET turns "On"
MOSFET $\mathrm{V}_{\text {GS }}>$ MOSFET $\mathrm{V}_{\text {TH }}$
MOSFET V ${ }_{\text {DS }} \sim 0 \mathrm{~V}$
JFET turns "On"
MOSFET $V_{\text {DS }} \sim 0$, JFET $V_{G S} \sim 0 \mathrm{~V}$ JFET $\mathrm{V}_{\text {TH }}$ is -6 V typical

Turn Off
MOSFET turns "Off"
MOSFET $V_{G S}$ < MOSFET $V_{T H}$
MOSFET "Off", $V_{\text {DS }}$ rises $>6 \mathrm{~V}$
T turns "Off"
High Voltage Across JFET V $V_{D S}$

- Gate charge comes from the LVMOS
- Same LVMOS used across many products leads to same Qg across many products
- Cascode dV/dt is controlled primarily by JFET built-in Rg (fixed) and secondarily by external MOSFET Rg (user controlled)
- Generally, turn-off is much faster than turn-on in cascodes, so it needs a higher Rgoff

V_{GS} Effect on E_{sw} for TO247-3L

HALF BRIDGE UJ3C120080KS
HS+LS

Rgon=1ohm
Rgoff=20ohm
Both HS and LS
$\mathrm{Tj}=125 \mathrm{C}$

At higher currents, a Vgs>12V allows faster turn-on for lower Eon.

Not much difference below 15A

Comparison of Switching Losses with and without using Ferrite Bead

Part \#: BLM41PG600SN1L Description: FERRITE BEAD 60 OHM 1806 1LN
Looks like 100 nH at 100 MHz
3. Rating

Customer Part Number	MURATA Part Number	Impedance (Ω)(at 100 MHz, Under StandardTesting Condition)		Rated Current (mA) ('1)		$\begin{aligned} & \hline \text { DCRe } \\ & (\Omega) \end{aligned}$	sistance max.	Remark
				Initial Values	Values After Testing			
			Typical			$\begin{gathered} \text { at } \\ 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} \text { at } \\ 125^{\circ} \mathrm{C} \end{gathered}$	
	BLM41PG600SN1L	30 min .	60	*1	*1	0.009	0.018	For DC power line
	BLM41PG600SN1B			6000	3700			
	BLM41PG750SN1L	45 min .	75	*1	*1	0.015	0.03	
	BLM41PG750SN1B			3500	2450			
	BLM41PG181SN1L	180 $\pm 25 \%$	180	*1	*1	0.02	0.04	
	BLM41PG181SN1B			3500	2100			
	BLM41PG471SN1L	$470 \pm 25 \%$	470	${ }^{* 1}$	*1	0.05	0.10	
	BLM41PG471SN1B			2000	1350			
	BLM41PG102SN1L	1000 $\pm 25 \%$	1000		*1	0.09	0.18	
	BLM41PG102SN1B			1500	1000			

- Ferrite beads may be use to control gate ringing.
- Smaller Rgoff values can be used with beads to reduce delay times, and reduce Eoff.
- Operating Temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad$ - Storage Temperature: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Comparison of Switching Waveforms with and without using Ferrite Bead ($\mathrm{Tj}=125^{\circ} \mathrm{C}, 800 \mathrm{~V}-26 \mathrm{~A}$)

Ferrite beads not used:

- Switch Rgon=1 Ω, Rgoff $=20 \Omega$, Vgs $=-5 \mathrm{~V}$ to 15 V
- FWD: Rgoff $=20 \Omega$, Vgs $=-5 \mathrm{~V}$

Ferrite beads used:

- Switch $\mathrm{Rg}=3.3 \Omega$, Vgs $=-5 \mathrm{~V}$ to 15 V
- FWD: $\mathrm{Rg}=3.9 \Omega, \mathrm{Vgs}=-5 \mathrm{~V}$

Using a ferrite bead, Turn-on peak current is lower with the bead since di/dt is reduced. Since lower Rg can be used with a ferrite bead, turn-off and turn-on delay times can be minimized.

Using Snubbers to manage switching waveforms

- UnitedSiC FETs have low Coss
- Snubber capacitances needed are 1 to $3 X$ of $C_{\text {oss }}$
- Therefore, very small snubber capacitances are needed to control voltage overshoot and reduce current ringing
- The net loss impact is $1-5 \%$ of $E_{O N}+E_{\text {OFF }}$
- Small surface mount components are usable, since Snubber R_{S} loss is between 0.25 W to 2 W , depending on frequency (while switching 50A, 800 V).

Hard Switching: Basic RC snubber

Snubber Design for UF3C120040K3S

- Cascode turn-off ringing may be reduced by high $\mathbf{R}_{\mathrm{G}, \mathrm{OFF}}$ but this leads to long delay times
- Waveforms in the second row show how the V_{DS} and V_{GS} ringing are dramatically improved with a small snubber, switching the FETs at 50A, 800V.
- Snubber loss is $<2.5 \%$ of total $\mathrm{E}_{\text {ON }}+\mathrm{E}_{\text {OFF }}$ at 10 A and $<1.5 \%$ at 50A.

UnitedSiC

Measuring snubber resistor loss

UF3C120040K4S HALF_BRIDGE
VDS 800V, ID $50 \mathrm{~A}, 125^{\circ} \mathrm{C}$, VGS 20V/-5V, Rgon 50Ω, Rgoff 33Ω,
Snubber Cs 115 pF, snubber Rs 10Ω
CH1: Snubber Rs voltage (20V/div);
CH2: Drain current (20A/div);
CH3: VGS (10V/div);
CH4: VDS (200V/div).
(a) Turn-off waveforms
(b) Snubber Rs voltage at turn-off CH 1
(c) Turn-on waveforms
(d) Snubber Rs voltage at turn-on CH 1

(c)
(d)

Snubber loss measured

UF3C120040K4S snubber Rs loss measurement vs. conventional $C V^{2}$ calculation.
This occurs because the CV² method assumes a constant charging voltage (infinite $\mathrm{dV} / \mathrm{dt}$), whereas practically, the device $\mathrm{dV} / \mathrm{dt}$ regulates the maximum charging rate

Benefits of Kelvin packages

- Switch faster by overcoming common source inductance
- Cleaner gate waveforms, even with much faster di/dt

DFN8X8

D2PAK-7L

- UF3C120040K3S: $\mathrm{E}_{\mathrm{on}}=1300 \mu \mathrm{~J}, \mathrm{di} / \mathrm{dt}=3800 \mathrm{~A} / \mu \mathrm{s}$

UF3C120040K4S: $E_{\text {on }}=845 \mu \mathrm{~J}$, di/dt $=7100 \mathrm{~A} / \mu \mathrm{s}$

- UF3C120040K3S: $E_{\text {off }}=208 \mu$

UF3C120040K4S: $E_{\text {off }}=170 \mu \mathrm{~J}$
-
WUnitedSiC

Reduced Turn-on losses (E_{on})

Hard switched half-bridge

- Dramatic improvement in $E_{\text {on }}$ at higher current levels
- Snubber loss included

Reduced Turn-off losses ($\mathrm{E}_{\text {off }}$)

Hard switched half-bridge

- Very low Eoff losses even at 50A
- Snubber loss included

Excellent choice in soft switched circuits too

800V, 125C Soft Switching Effective Eoff

Effective turn-off loss \approx

$$
E_{\text {off }}(H S)-\left(E_{o s s}+E_{c s}\right)
$$

New SiC FET User Guide

650V FETs
Device selector by spec
\checkmark RC snubber guide
\checkmark End application device selection

									Gate Drive voltage positive rail RGON				Gate Drive voltage negative rail RGOFF								Hard switched applications． Active rectifier， Totem Pole PFC， Full－bridge etc．			zvs application s LLC		zvs application s PSFB	
Product Name	$\begin{aligned} & \stackrel{\otimes}{8} \\ & \stackrel{y}{0} \\ & \text { 0} \end{aligned}$	$\begin{aligned} & \times \\ & \stackrel{x}{0} \\ & \text { 50 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\sim}{6} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { ত} \\ & \text { 음 } \\ & \underline{0} \end{aligned}$			$\begin{aligned} & \text { O} \\ & \text { N } \\ & \stackrel{y}{0} \\ & \frac{\widetilde{i}}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & N \\ & \frac{N}{0} \\ & \frac{\pi}{4} \end{aligned}$	ㄹ	さ	in	৷	z	＜			$\begin{aligned} & \text { O } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 자 } \\ & \text { B } \\ & \text { O} \\ & \stackrel{\rightharpoonup}{W} \end{aligned}$			N N N N 를		$\begin{aligned} & \text { N } \\ & \stackrel{N}{\circ} \\ & \hline \mathbf{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { No } \\ & \text { B } \\ & \stackrel{0}{\circ} \end{aligned}$			$\begin{aligned} & N \\ & \stackrel{N}{⿳ 亠 口 冋 口} \\ & \text { N } \\ & \text { ion } \end{aligned}$
Units		V	A	A	C／W	$\mathrm{m} \Omega$	$\mathrm{m} \Omega$	$\mathrm{m} \Omega$	Ω	Ω	Ω	Ω	Ω	Ω		Ω	pF	uJ	uJ	pF							
UJ3C065080T3S	TO220－3L	650	31	23	0.61	80	110	140	5	10	20	30	5	10	Optional	4.7	220				X			X		X	
UJ3C065080K3S	TO247－3L	650	31	23	0.61	80	110	140	5	10	20	30	5	10	Optional	4.7	220				X			X		X	
UJ3C065080B3	D2PAK－3L	650	25	18.2	1	80	110	140	5	10	20	30	5	10	Optional	4.7	220				X			X		X	
UF3C065080T3S	TO220－3L	650	31	23	0.61	80	110	140	5	10	20	30	10	20	Required	4.7	220					X					
UF3C065080K3S	TO247－3L	650	31	23	0.61	80	110	140	5	10	20	30	10	20	Required	4.7	220			77		X					
UF3C065080B3	D2PAK－3L	650	25	18.2	1	80	110	140	5	10	20	30	10	20	Required	4.7	220					X					
UF3C065080B7S	D2PAK－7L	650	TBD	TBD	TBD	80	110	140	15	20	30	50	5	10	Recommended	10	115					X	X		X	X	X
UF3C065080K4S	TO247－4L	650	31	23	0.61	80	110	140	15	20	30	50	5	10	Recommended	10	115					X	X		X	X	X
UF3C065040T3S	TO220－3L	650	54	40	0.35	42	58	78	5	10	20	30	10	20	Required	4.7	330					X				X	X
UF3C065040K3S	TO247－3L	650	54	40	0.35	42	58	70	5	10	20	30	10	20	Required	4.7	330	16.0	23.0			X				X	X
UF3C065040B3	D2PAK－3L	650	41	30	0.65	42	58	70	5	10	20	30	10	20	Required	4.7	330			150		X				X	X
UF3SC065040B7S	D2PAK－7L	650	TBD	TBD	TBD	42	58	70	15	20	30	50	5	10	Recommended	10	110					X	X		X	X	X
UF3C065040K4S	TO247－4L	650	54	40	0.35	42	58	70	15	20	30	50	5	10	Recommended	10	110					X	X		X	X	X
UF3SC065040D8	DFN88	650	TBD	TBD	TBD	42	58	70	15	20	30	50	5	10	Recommended	10	110					X	X		X	X	X
UJ3C065030T3S	TO220－3L	650	85	62	0.26	27	35	43	5	10	20	50	5	10	Optional	4.7	680				X			X		X	
UJ3C065030K3S	TO247－3L	650	85	62	0.26	27	35	43	5	10	20	50	5	10	Optional	4.7	680	13.8	20.3		X			X		X	
UJ3C065030B3	D2PAK－3L	650	66	47	0.48	27	35	43	5	10	20	50	5	10	Optional	4.7	680				X			X		X	
UF3C065030T3S	TO220－3L	650	85	62	0.26	30	39	48	5	10	20	30	10	20	Required	4.7	680					X				X	X
UF3C065030K3S	TO247－3L	650	85	62	0.26	30	39	48	5	10	20	30	10	20	Required	4.7	680	15.8	22.5	230		X				X	X
UF3C065030B3	D2PAK－3L	650	66	47	0.48	30	39	48	5	10	20	30	10	20	Required	4.7	680					X				X	X
UF3SC065030B7S	D2PAK－7L	650	TBD	TBD	TBD	30	39	48	15	20	30	50	5	10	Recommended	10	220					X	X		X	X	X
UF3C065030K4S	TO247－4L	650	85	62	0.26	30	39	48	15	20	30	50	5	10	Recommended	10	220					X	X		X	X	X
UF3SC065030D8	DFN88	650	TBD	TBD	TBD	30	39	48	15	20	30	50	5	10	Recommended	10	220					X	X		X	X	X

UnitedSic

New SiC FET User Guide

1200V FETs

Device selector by spec
\checkmark RC snubber guide
\checkmark End application device selection

Paralleling discrete devices for higher power

GENERAL GUIDELINES FOR PCB LAYOUT

- Symmetry
- Minimum PCB stray inductances
- Separate gate resistor
- Minimize capacitive coupling between gate and drain of each transistor.

Rds positive temperature coefficient aids current sharing

$L_{\text {DS }}$: main loop stray inductance
L_{SS} : common source inductance

Paralleling discrete devices for higher power

Parallel turn on with same Vth © $25^{\circ} \mathrm{C}$, Rgon $=10 \mathrm{Ohm}, \mathrm{Vds}=850 \mathrm{~V}, \mathrm{Is}=36 \mathrm{~A}$

Parallel turn off with same Vth @ $25^{\circ} \mathrm{C}$,
Rgoff $=\mathbf{3 2} \mathbf{O h m}, \mathrm{Vds}=850 \mathrm{~V}$, Is $=\mathbf{3 6} \mathrm{A}$

UnitedSiC

Parallel turn on with different Vth (a) $25^{\circ} \mathrm{C}$, Rgon $=10 \mathrm{Ohm}, \mathrm{Vds}=850 \mathrm{~V}, \mathrm{ID}=36 \mathrm{~A}$

Parallel turn off with different Vth Parallel turn off with different Vth
(a) $25^{\circ} \mathrm{C}$, Rgoff $=32 \mathrm{Ohm}, \mathrm{Vds}=850 \mathrm{~V}$, Is $=36 \mathrm{~A}$

Vth mismatch

Turn on with same Vth, \#3@ $65^{\circ} \mathrm{C}$, \#5 @ $25^{\circ} \mathrm{C}$, Rgon $=10 \mathrm{Ohm}, \mathrm{Vds}=850 \mathrm{~V}, \mathrm{Is}=36 \mathrm{~A}$

Turn off with same Vth, \#3 @ $65^{\circ} \mathrm{C}$, \#5 @ $25^{\circ} \mathrm{C}$, Rgoff $=32 \mathrm{Ohm}, \mathrm{Vds}=850 \mathrm{~V}$, Is $=36 \mathrm{~A}$

T_{j} mismatch of 40 C

UnitedSiC FET paralleling is tolerant of typical parametric mismatches and temperature differentials

Scalable SiC Cascode Power Blocks

Conventional Method:
Single external gate driver and capacitor at module level => All circuit legs switch through common parasitic inductance.

Layout of 8 Parallel Legs

Preferred Method: Local bus capacitance and gate drive buffer for each circuit leg => High frequency switching contained within each converter leg.

Scalable SiC Cascode Power Blocks

Power blocks have been built for halfbridges and TNPC units with upto 8X units in parallel

Switching of a power block with 4X HS and 4X LS SiC FETs

APPENDIX

How the cascode FET works

Easy to Cascode JFET Design

- UnitedSiC JFET has zero drain-source capacitance
- No drain-source-gate voltage divider
- Good for ZVS operation
- Stable

Body Diode Vf: UnitedSiC FET vs SiC MOSFET

Low VF \& Qrr eliminates need for separate anti-parallel diode

Typical UnitedSiC FET

Typical SiC MOSFET

Figure 14. 3rd Quadrant Characteristic at $25^{\circ} \mathrm{C}$
Figure 10 3rd quadrant characteristics at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

$$
\text { at } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}
$$

What controls switching speeds

- Turn-on di/dt can be slowed by MOSFET Rgon in a TO247-3L, where L_{s} de-biases the $\mathrm{V}_{\mathrm{gs}(\mathrm{MOS})}$. So higher $\mathrm{V}_{\text {gs }}$ values can speed up di/dt.
- The upper limit to the di/dt is set by the fact that the JFET Vth is fixed, and the JFET experiences a $\mathrm{V}_{\mathrm{GS}(\mathrm{JFET})}=-\mathrm{V}_{\mathrm{DS}(\mathrm{MOS})}$ that is fixed. The internal inductance and the $R_{G J F E T}{ }^{*}\left(\mathrm{C}_{\text {gsJ }}+\mathrm{C}_{\mathrm{oss}(\mathrm{MOS})}\right)$ sets this maximum di/dt.
- Once the MOSFET has turned off enough to pinch-off the JFET, $\mathrm{dV} / \mathrm{dt}$ is largely regulated by the $\mathrm{C}_{\text {gdu }}{ }^{*} \mathrm{R}_{\text {GJFET. }}$. However, slowing the MOSFET drain node using a external $\mathrm{R}_{\text {goff }}$ can
 influence the turn-off rate, essentially slowing the gate voltage applied to the JFET at turn-off.

Measured Turn-on Energy Loss, di/dt and dv/dt with 600V Inductive Load. FWD: UJC1206K

Measured Turn-off Energy Loss, di/dt and dv/dt with 600V Inductive Load Condition. FWD: UJC1206K

Comparing G2, G3 cascodes and SiC MOSFETs in half-bridge

UJC1210K, 12V/-5V
Rgon $=2.3 \Omega$, Rgoff $=10 \Omega$, Eon $=406 u \mathrm{~J}$ didt $=1.28 \mathrm{~A} / \mathrm{ns}, \mathrm{dvdt}=69 \mathrm{~V} / \mathrm{ns}$

UJC1210K
Rgon $=2.3 \Omega$, Rgoff $=10 \Omega$, Eoff $=101 \mathrm{uJ}$ didt $=4.2 \mathrm{~A} / \mathrm{ns}, \mathrm{dvdt}=86 \mathrm{~V} / \mathrm{ns}$

Time Scale (20 ns)

UJ3C120080K3S, 15V/-5V
Rgon $=1 \Omega$, Rgoff $=20 \Omega$, Eon $=392 \mathrm{uJ}$ didt $=2.78 \mathrm{~A} / \mathrm{ns}, \mathrm{dvdt}=78 \mathrm{~V} / \mathrm{ns}$

UJ3C120080K3S

Rgon $=1 \Omega$, Rgoff $=20 \Omega$, Eon $=107 \mathrm{uJ}$ didt $=3.7 \mathrm{~A} / \mathrm{ns}, \mathrm{dvdt}=85 \mathrm{~V} / \mathrm{ns}$

C2M080120D, 18V/-5V Rgon $=5 \Omega$, Rgoff $=5 \Omega$, Eon $=446 \mathrm{uJ}$ didt $=2.1 \mathrm{~A} / \mathrm{ns}, \mathrm{dvdt}=71 \mathrm{~V} / \mathrm{ns}$

C2M080120D
Rgon $=5 \Omega$, Rgoff $=5 \Omega$, Eoff $=115 \mathrm{uJ}$ didt $=2.3 \mathrm{~A} / \mathrm{ns}, \mathrm{dvdt}=60 \mathrm{~V} / \mathrm{ns}$

UJ3C120080K3S Half-bridge Vgs drive + 15V/-5V
Rgon=1ohm, Rgoff=20ohm, 125C

UJ3C120080K3S Half-bridge Vgs drive +15V/-5V

Rgon=2.3ohm, Rgoff=8ohm, 125C

UJ3C switching characteristics 80m, 1200V

Figure 18 Clamped inductive switching energy vs. drain current at $T_{J}=150^{\circ} \mathrm{C}$

Figure 20 Clamped inductive switching turn-off energy vs. $\boldsymbol{R}_{\text {G,EXT_OFF }}$

Figure 21 Clamped inductive switching energy
vs. junction temperature at $I_{D}=20 A$

UnitedSic

UJ3C switching characteristics 30m, 650V

Figure 18 Clamped inductive switching energy
vs. drain current at $T_{J}=150^{\circ} \mathrm{C}$

Figure 20 Clamped inductive switching turn-off energy vs. $\boldsymbol{R}_{G, E X T}$ OFF

Figure 21 Clamped inductive switching energy
vs. junction temperature at $I_{D}=50 \mathrm{~A}$

UnitedSiC

Measured Qrr of UJ3C120040K3S vs UF3C120040K4S

UF3C120080K4S

Half-Bridge Switching Energies

UF3C120080K4S Switching Waveforms $800 \mathrm{~V}, \mathrm{Tj}=25^{\circ} \mathrm{C}$, Vgs $=-5 \mathrm{~V} /+12 \mathrm{~V}$

Rg_on $=1 \Omega$
Rg_off $=47 \Omega$
Unitec Turn-on di/dt =8563A/us
Rg_on $=21 \Omega$
Rg_off $=47 \Omega$
Turn-on di/dt $=1995 \mathrm{~A} /$ us

ZVS circuits LLC, PSFB

- Since turn-on is no longer critical, it should generally be possible to use a single Rgoff.
- Depending on current 5-20ohm works well
- Sufficient to limit gate drive to $0-12 \mathrm{~V}$ - no benefit with higher Vg s, no benefit with negative gate drive
- A bead can still be used if currents are high, or if a low Rgoff is required to minimize delay time at high frequencies

650V cascode - Totem Pole PFC

Uniquely qualified for use in CCM Totem Pole PFC due to excellent Body Diode

UnitedSiC

Snubber Design for UF3C120080K4S series

Test Conditions

- Top switch is the freewheeling device
- VDS, ID are measured for the bottom switch
- VGS: +15V turn on, -5 V turn off
- Rgon 10Ω, Rgoff 10Ω
$1 \mathbf{C} \cdot \operatorname{VDS} 800 \mathrm{~V}$
- ID: 25A
- Temperature: $120^{\circ} \mathrm{C}$ both top \& bottom switch
- Snubber: $10 \Omega, 220 \mathrm{pF}$
- When adding a snubber, switching loss includes both device and snubber loss.
- DUT: UF3C120080K4S

Snubber Design for UF3C120080K4S series

No Snubber, 25A, $800 \mathrm{~V}, 120^{\circ} \mathrm{C}$

- The measurement on the left shows more VDS ringing at turnoff transient than turn-on.
- Therefore the snubber should be placed on the bottom switch.

UnitedSiC

Snubber Design for UF3C120080K4S series

Guideline for snubber design

No Snubber, 25A, $800 \mathrm{~V}, 120^{\circ} \mathrm{C}$

Time: 20ns/div ID: 10A/div VDS: 200V/div
The Cadd is a ceramic capacitor rated at 220 pF . At 800 V the ceramic capacitor capacitance is around 150 pF which is also close to $\mathrm{Cs}=148 \mathrm{pF}$. Hence, Cs is the same as Cadd.

The VDS ringing frequency is 100 MHz (f0). Adding a Cadd (220pF) reduces frequency to 42 MHz (f1).
Therefore the circuit stray capacitance CLK is 47.1 pF .

$$
C L K=\frac{\text { Cadd }}{(f 0 / f 1)^{2}-1}
$$

Therefore the circuit leakage inductance LLK is 54 nH .

$$
L L K=\frac{1}{(2 \pi f 0)^{2} C L K}
$$

If damping factor $\zeta=1.6, \mathrm{Rs}=10 \Omega$

$$
R s=\frac{1}{2 \zeta} \sqrt{\frac{L L K}{C L K}}
$$

If cutoff frequency $\mathrm{fc}=68.5 \mathrm{MHz}, \mathrm{Cs}=220 \mathrm{pF}$.

$$
C s=\frac{1}{2 \pi R s f c}
$$

Snubber Design for UF3C120080K4S series

Trade off's using a snubber

Time: 20ns/div ID: 10A/div VDS: 200V/div

With Snubber

Eon ${ }^{*}=371 u J$, Eoff* $=147 \mathrm{uJ}$

The Eon*, Eoff* with snubber are the total loss of device and snubber.

- Cascode turn-off ringing may be reduced by high Rgoff but this leads to long delay times
- Quick and easy solution to use fast SiC devices in existing designs without causing excessive ringing

UnitedSiC

Customer Reference: Micropower

- Phase shifted Full bridge
- Need for an excellent body diode
- 10kW battery charger
- Technological partnership
- RESULTS:
- 30% higher output power with UnitedSiC FET in same dimensions

MICROPOWER GROUP"
POWERFUL SOLUTIONS PARTNER

- Easy to replace Si-FET replacement using standard gate drive
- 1.5% higher efficiency

UnitedSiC

UnitedSiC FET advantage in PSFB

- Previous technologies include IGBT, super-junction MOSFET, and SiC MOSFET
- IGBTs have very high turn-off switching power loss, slow-switching reverse diode
- Super-junction MOSFETs have larger chip size, slow-switching reverse diode
- SiC MOSFET has larger chip size, asymmetric gate drive (-5 to 18 V typically)
- UnitedSiC FET is the best performing PSFB switch

Battery Charger topology

A non controlled traditional battery charger (rectifier) provides a simple direct AC/DC conversion

Disadvantages of this solution are:

- Low efficiency
- Large physical size
- Long charge times
- Charge depends on changes in the mains supply (with overcharge danger in the final charge phase)

In modern battery chargers these disadvantages are solved with an indirect ACIDC conversion, by passing through an intermediate DC/DC conversion

This is the usual method of operation for the SMPS (Switching Mode Power Supply) at high power. This solution gives a good performance for minimum costs and physical dimensions using switches more faster and powerful (modern technology)

The main advantages of this solution are

- High efficiency
- Reduced dimensions
- Short charge times
- Charge independent from the changes of the mains supply
- Electronic control that provides the desired charge curve

