Designing with UnitedSiC FETs

Pete Losee Manager Device Technology Development December 2018

- Introduction to the UnitedSiC FET portfolio
- General Gate Drive Guidelines
- Using snubbers to manage switching waveforms
- Benefits of packages with Kelvin connections
- UnitedSiC FET User Guide
- Tips for paralleling TO packages

SiC Application Growth

Server & Datacenter

Lighting & Electronic Ballast

Electric Vehicles

Lab & Din Rail PSU

Battery Charging

Renewable Energy & Storage

Key Features

United SiC

Drop-in Functionality Without Changing Gate Drive Voltage

(Replaces Si IGBTs, Si FETs, SiC MOSFETs or Si Superjunction Devices)

12V/0V Operation Simplifies Upgrading

Superior Gate and ESD Protection

UJ3C & UF3C Series, 650/1200V SiC FETs

Key Features

- Excellent body diode performance (Vf < 2V)
- Drive with any Si and/or SiC gate drive voltage
- High performance cascode configuration
- Superior thermal performance
- Integrated ESD and gate protection
- Kelvin package (UF3C Fast series)

Innovative cascode configuration enables Si and SiC gate voltage compatibility

Integrated clamping diode protects gates from |25V| and adds ESD protection

UnitedSiC Product Portfolio

UF3C performance benefits

1200V Devices	UJ3C120040K3S	UF3C120040K3S						
Qrr (150°C)	482nC	289nC 💽						
Rds(on)	35mohm	35mohm						
VF(20A)	1.5V	1.5V						

650V Devices	UJ3C065030K3S	UF3C065030K3S					
Qrr (150°C)	400nC	188nC 👽					
Rds(on)	27mohm	27mohm					
VF(20A)	1.3V	1.3V					

- Lower losses for higher frequency switching circuits, especially where hard switching at turn-on is needed
- No changes to thermal resistance or current ratings

UF3C FAST SiC FETs in 4-lead kelvin connected package

All the benefits of UnitedSiC SiC FETs

PLUS

- Extremely fast switching
- Lowest switching losses
- Clean gate waveforms
- No false triggering

• UF3C120040K3S: $E_{off} = 208 \mu J$

• UF3C120040K4S: E_{off} = 170µJ

UF3C120040K3S: E_{on} = 1300µJ, di/dt = 3800A/µs
 UF3C120040K4S: E_{on} = 845µJ, di/dt = 7100A/µs

General Gate Drive Guidelines

- UnitedSiC cascode FET Vth=5V
- Vgsmax = +/-25V
- Gate drive 0 to 12V is best, especially in ZVS applications
- No issues with negative gate drive. Any voltages +/-20V may be used with the right Rg changes
- Devices are compatible with a wide range of gate drives and gate drive ICs – both Si MOS/IGBT drivers as well as newer SiC MOSFET drivers
- Also compatible with simple gate drive transformers

Drop-in Functionality Without Changing Gate Drive Voltage

(Replaces Si IGBTs, Si FETs, SiC MOSFETs or Si Superjunction Devices)

12V/0V Operation Simplifies Upgrading

Superior Gate and ESD Protection

-705 CGS (maximum) CGS (maxim) CGS (maxim) CGS (maximum) CGS (maxim) CGS (maxim) CGS (max

Innovative cascode configuration enables Si and SiC gate voltage compatibility

Integrated clamping diode protects gates from |25V| and adds ESD protection

Cascode switching and gate charge

Figure 8 Typical gate charge at V_{DS} = 800V and I_D = 40A

- Gate charge comes from the LVMOS
- Same LVMOS used across many products leads to same Qg across many products
- Cascode dV/dt is controlled primarily by JFET built-in Rg (fixed) and secondarily by external MOSFET Rg (user controlled)
- Generally, turn-off is much faster than turn-on in cascodes, so it needs a higher Rgoff

V_{GS} Effect on E_{SW} for TO247-3L

HALF BRIDGE UJ3C120080KS HS+LS

Rgon=10hm Rgoff=200hm Both HS and LS

Tj=125C

At higher currents, a Vgs>12V allows faster turn-on for lower Eon.

Not much difference below 15A

Comparison of Switching Losses with and without using Ferrite Bead

*1 *1

1500 1000

0.09

0.18

1000

Operating Temperature: -55°C to +125°C
 Storage Temperature: -55°C to +125°C

1000±25%

BLM41PG102SN1L

BLM41PG102SN1B

3. Rating

Ferrite beads may be use to control gate ringing.

Smaller Rgoff values can be used with beads to reduce delay times, and reduce Eoff.

Comparison of Switching Waveforms with and without using Ferrite Bead (Tj = 125°C, 800V-26A)

Ferrite beads not used:

- Switch Rgon=1 Ω , Rgoff = 20 Ω , Vgs = -5V to 15V
- FWD: Rgoff = 20Ω , Vgs = -5V

Ferrite beads used:

- Switch Rg= 3.3Ω , Vgs = -5V to 15V
- FWD: $Rg = 3.9\Omega$, Vgs = -5V

<u>Using a ferrite bead, Turn-on peak current is lower with the bead since di/dt is reduced. Since lower</u> <u>Rg can be used with a ferrite bead, turn-off and turn-on delay times can be minimized.</u>

USCi Confidential

Using Snubbers to manage switching waveforms

- UnitedSiC FETs have low C_{OSS}
- Snubber capacitances needed are 1 to 3X of C_{OSS}
- Therefore, very small snubber capacitances are needed to control voltage overshoot and reduce current ringing
- The net loss impact is 1-5% of $\rm E_{ON}$ + $\rm E_{OFF}$
- Small surface mount components are usable, since Snubber R_s loss is between 0.25W to 2W , depending on frequency (while switching 50A, 800V).

Hard Switching: Basic RC snubber

ZVS: RC snubber in series with de-coupling capacitor

UnitedSiC Company Confidential

Snubber Design for UF3C120040K3S

- Cascode turn-off ringing may be reduced by high R_{G,OFF} but this leads to long delay times
- Waveforms in the second row show how the V_{DS} and V_{GS} ringing are dramatically improved with a small snubber, switching the FETs at 50A, 800V.
- Snubber loss is <2.5% of total E_{ON}+E_{OFF} at 10A and < 1.5% at 50A.

Measuring snubber resistor loss

UF3C120040K4S HALF BRIDGE

VDS 800V, ID 50A, 125°C, VGS 20V/-5V, Rgon 50 Ω , Rgoff 33 Ω , Snubber Cs 115pF, snubber Rs 10Ω

CH1: Snubber Rs voltage (20V/div); CH2: Drain current (20A/div); CH3: VGS (10V/div); CH4: VDS (200V/div).

(a) Turn-off waveforms

- (b) Snubber Rs voltage at turn-off CH1
- (c) Turn-on waveforms
- (d) Snubber Rs voltage at turn-on CH1

Snubber loss measured

UF3C120040K4S snubber Rs loss measurement vs. conventional CV^2 calculation.

This occurs because the CV² method assumes a constant charging voltage (infinite dV/dt), whereas practically, the device dV/dt regulates the maximum charging rate

Benefits of Kelvin packages

- Switch faster by overcoming common source inductance
- Cleaner gate waveforms, even with much faster di/dt

DFN8X8

TO247-4L

D2PAK-7L

Reduced Turn-on losses (E_{on})

Hard switched half-bridge

- Dramatic improvement in E_{on} at higher current levels
- Snubber loss
 included

Reduced Turn-off losses (E_{off})

Hard switched half-bridge

- Very low Eoff losses even at 50A
- Snubber loss
 included

Excellent choice in soft switched circuits too

Effective turn-off loss \approx

```
E_{off}(HS) - (E_{oss}+E_{cs})
```


New SiC FET User Guide

650V FETs

- ✓ Device selector by spec
- ✓ RC snubber guide
- ✓ End application device selection

									Gate positi	Drive v ve rail l	oltage RGON		Gate vol negat RG	Drive tage ive rail OFF							Har app Activ Toter Full-	d switc blicatio ve rect n Pole bridge	ched ns. ifier, PFC, etc.	Z applic s L	/S xation LC	Z\ applic s P	/S :ation SFB
Product Name	Package	Vdsmax	ld (25C)	ld (100C)	RthjC (Typ)	Rds(25C)	Rds(125C)	Rds(175C)	10V	12V	15V	20V	0V	-5V	RC snubber	Rsnub	Csnub	Esnub @10A	Esnub @ 30A	Coss(er)	Upto 20kHz	20-100KHz	>100kHz	50-150kHz	150-500kHz	20-50kHz	50-200kHz
Units		v	A	Α	C/W	mΩ	mΩ	mΩ	Ω	Ω	Ω	Ω	Ω	Ω		Ω	рF	uJ	uJ	pF							L
UJ3C065080T3S	TO220-3L	650	31	23	0.61	80	110	140	5	10	20	30	5	10	Optional	4.7	220				X			X		X	
UJ3C065080K3S	10247-3L	650	31	23	0.61	80	110	140	5	10	20	30	5	10	Optional	4.7	220				X			X		X	l
UJ3C065080B3	D2PAK-3L	650	25	18.2	1	80	110	140	5	10	20	30	5	10	Optional	4.7	220				Х			Х		X	ļ
UF3C06508013S	T0220-3L	650	31	23	0.61	80	110	140	5	10	20	30	10	20	Required	4.7	220			77		X					
UF3C065080K35	10247-3L	650	31	23	0.61	80	110	140	5	10	20	30	10	20	Required	4.7	220					X					(
UF3C065080B3	D2PAK-3L	650	25	18.2	1	80	110	140	5	10	20	30	10	20	Required	4.7	220					X	V		X		X
	D2PAR-7L	650	21	160	0.61	80	110	140	15	20	30	50	5	10	Recommended	10	115					\rightarrow			Ň	$\hat{}$	$\hat{}$
UF3C005080K45	TO247-4L	650	51	23	0.01	42	F0	70	15	20	30	30	10	10	Recommended	10	220						^		^		
UF3C005040133	TO220-3L	650	54	40	0.35	42	50	70	5	10	20	30	10	20	Required	4.7	220	16.0	22.0			<u>~</u>				$\hat{}$	Ň
UF3C065040R33	D2PAK-3L	650	11	40	0.35	42	58	70	5	10	20	30	10	20	Required	4.7	330	16.0	23.0			$\hat{}$				$\hat{}$	Ŷ
LIE390065040B7S	D2PAK-7L	650	TBD	TBD	TBD	12	58	70	15	20	30	50	5	10	Recommended	10	110			150		X	X		X	X	X
UF3C065040K4S	TO247-41	650	54	40	0.35	12	58	70	15	20	30	50	5	10	Recommended	10	110					X	X		X	X	X
UF3SC065040D8	DEN88	650	TBD	TBD	TBD	42	58	70	15	20	30	50	5	10	Recommended	10	110					X	X		X	X	X
UJ3C065030T3S	TO220-3L	650	85	62	0.26	27	35	43	5	10	20	50	5	10	Optional	4.7	680				Х			Х		X	
UJ3C065030K3S	TO247-3L	650	85	62	0.26	27	35	43	5	10	20	50	5	10	Optional	4.7	680	13.8	20.3		X			X		X	(
UJ3C065030B3	D2PAK-3L	650	66	47	0.48	27	35	43	5	10	20	50	5	10	Optional	4.7	680				X			X		X	(
UF3C065030T3S	TO220-3L	650	85	62	0.26	30	39	48	5	10	20	30	10	20	Required	4.7	680					Х				Х	Х
UF3C065030K3S	TO247-3L	650	85	62	0.26	30	39	48	5	10	20	30	10	20	Required	4.7	680	15.8	22.5	230		Х				Х	Х
UF3C065030B3	D2PAK-3L	650	66	47	0.48	30	39	48	5	10	20	30	10	20	Required	4.7	680					Х				Х	Х
UF3SC065030B7S	D2PAK-7L	650	TBD	TBD	TBD	30	39	48	15	20	30	50	5	10	Recommended	10	220					Х	Х		Х	Х	Х
UF3C065030K4S	TO247-4L	650	85	62	0.26	30	39	48	15	20	30	50	5	10	Recommended	10	220					Х	Х		Х	Х	Х
UF3SC065030D8	DFN88	650	TBD	TBD	TBD	30	39	48	15	20	30	50	5	10	Recommended	10	220					Х	Х		Х	Х	Х

New SiC FET User Guide

✓ Device selector by spec

✓ RC snubber guide

Rs (Ω)

4.7

10

									Gate I positi	Gate Drive voltage positive rail RGON		Gate Dr voltag Jate Drive voltage negative nositive rail RGON RGOF			Gate Drive voltage negative rail RGOFF								Har app Actir Toter Full-	d switc olicatio /e recti n Pole bridge	hed ns. ifier, PFC, etc.	Z' applie s L	/S cation LC	ZV applic s P	/S cation SFB
Product Name	Package	Vdsmax	ld (25C)	ld (100C)	Rt hjC (Typ)	Rds(25C)	Rds(125C)	Rds(175C)	10V	12V	15V	20V	0V	-5V	RC snubber	Rsnub	Csnub	Esnub @10A	Esnub @30A	Coss(er)	Upto 20kHz	20-100KHz	>100kHz	50-150kHz	150-500kHz	20-50kHz	50-200kHz		
Units		V	Α	Α	C/W	mΩ	mΩ	mΩ	Ω	Ω	Ω	Ω	Ω	Ω		Ω	pF	uJ	uJ	pF									
UJ3C120150K3S	TO247-3L	1200	18.4	13.8	0.7	150	255	330	5	10	20	30	5	10	Optional	4.7	100				Х			Х		Х			
UF3C120150K3S	TO247-3L	1200	18.4	13.8	0.7	150	255	330	5	10	20	30	10	20	Required	4.7	100			34		Х							
UF3C120150B7S	D2PAK-7L	1200	TBD	TBD	TBD	150	255	330	15	20	30	50	5	10	Recommended	10	47			54		Х	Х		Х	Х	Х		
UF3C120150K4S	TO247-4L	1200	18.4	13.8	0.7	150	255	330	15	20	30	50	5	10	Recommended	10	47					Х	Х		Х	Х	Х		
UJ3C120080K3S	TO247-3L	1200	33	24	0.45	80	136	172	5	10	20	30	5	10	Optional	4.7	150	5.0	8.0		Х			Х		Х			
UF3C120080K3S	TO247-3L	1200	33	24	0.45	80	136	172	5	10	20	30	10	20	Required	4.7	150			59		Х							
UF3C120080B7S	D2PAK-7L	1200	TBD	TBD	0.6	80	136	172	15	20	30	50	5	10	Recommended	10	68			00		Х	Х		Х	Х	Х		
UF3C120080K4S	TO247-4L	1200	33	24	0.45	80	136	172	15	20	30	50	5	10	Recommended	10	68					Х	Х		Х	Х	Х		
UJ3C120040K3S	TO247-3L	1200	65	47	0.27	35	56	73	5	10	20	30	5	10	Optional	4.7	330	14.7	21.6		Х			Х		Х			
UF3C120040K3S	TO247-3L	1200	65	47	0.27	35	56	73	5	10	20	30	10	20	Required	4.7	330	16.1	23.5	112		Х							
UFS3C120040B7S	D2PAK-7L	1200	TBD	TBD	TBD	35	56	73	15	20	30	50	5	10	Recommended	10	110	6.0	11.4	112		Х	Х		Х	Х	Х		
UF3C120040K4S	TO247-4L	1200	65	47	0.27	35	56	73	15	20	30	50	5	10	Recommended	10	110	0.9	11.4			Х	Х		Х	Х	Х		

Cs (pF)	Series	Part Number	Package	Rated V	
47		202R18N470JV4E	1206	2000V	iΓ
68		C1206C680JGGAC7800	1206	2000V	i I
100		202R18N101JV4E	1206	2000V	
150	C0G	C1206C151JGGAC7800	1206	2000V	i I
220		C1206C221JGGAC7800	1206	2000V	
330		C1210C331JGGACTU	1210	2000V	i I
680		C1808C681JGGAC7800	1808	2000V	i I
"C0G" ceramic capac	itors are most stable.				

United SiC	
------------	--

1200V FETs

URL - https://unitedsic.com/cascodes/

1 1.5 For "KTR18" resistor is rated at 500V and the overload voltage is 1000V.

Power Rating (W)

0.25

0.5

1

1.5

0.25

0.5

For "SR1206" resistor is rated at 200V, the overload voltage is 400V, the dielectric withstanding voltage is 500V.

Part Number

KTR18EZPF4R70

SR1206FR-7W4R7L

CRCW20104R70JNEFHP

CRCW25124R70JNEGHP

KTR18EZPF10R0

SR1206FR-7W10RL

CRCW201010R0JNEFHP

CRCW251210R0JNEGHP

Package

1206

1206

2010

2512

1206

1206

2010

2512

Paralleling discrete devices for higher power

GENERAL GUIDELINES FOR PCB LAYOUT

- Symmetry
- Minimum PCB stray inductances
- Separate gate resistor
- Minimize capacitive coupling between gate and drain of each transistor.

 L_{DS} : main loop stray inductance L_{SS} : common source inductance

Paralleling discrete devices for higher power

Parallel turn on with same Vth @ 25 °C,

Parallel turn off with same Vth @ 25 °C, Rgoff = 32 Ohm, Vds = 850 V, Is = 36 A

Parallel turn on with different Vth @ 25 °C, Rgon = 10 Ohm, Vds = 850 V, ID = 36 A

Turn on with same Vth, #3 @ 65 °C, #5 @ 25 °C, Rgon = 10 Ohm, Vds = 850 V, Is = 36 A

Parallel turn off with different Vth @ 25 °C, Rgoff = 32 Ohm, Vds = 850 V, Is = 36 A

Vth mismatch

Turn off with same Vth, #3 @ 65 °C, #5 @ 25 °C, Rgoff = 32 Ohm, Vds = 850 V, Is = 36 A

time (ns)

 T_J mismatch of 40C

UnitedSiC FET paralleling is tolerant of typical parametric mismatches and temperature differentials

Scalable SiC Cascode Power Blocks

Conventional Method: Single external gate driver and capacitor at module level => All circuit legs switch through common parasitic inductance.

Preferred Method: Local bus capacitance and gate drive buffer for each circuit leg => High frequency switching contained within each converter leg.

Layout of 8 Parallel Legs

Power loop showing the Bottom of the PCB, the central "bus bar", and the gate drive loops on the Top layer

Scalable SiC Cascode Power Blocks

Power blocks have been built for halfbridges and TNPC units with upto 8X units in parallel

Switching of a power block with 4X HS and 4X LS SiC FETs

APPENDIX

How the cascode FET works

Cascode Internal Operation

JFET V_{GS =} - MOSFET V_{DS}

DBC Si MOSFET die SiC JFET die

Copper lead

frame

Mold Compound

Easy to Cascode JFET Design

- UnitedSiC JFET has zero drain-source capacitance
- No drain-source-gate voltage divider
- Good for ZVS operation
- Stable

Ref: X. Huang, W. Du, F.C. Lee, Q. Li and Z. Liu, "Avoiding Divergent Oscillation of a Cascode GaN Device Under High-Current Turn-Off Condition", IEEE Trans. Power Electron., 2017

Body Diode VF: UnitedSiC FET vs SiC MOSFET

Typical UnitedSiC FET 0 Vgs = 0V -5 - Vgs= 5V -Vgs = 8V Drain Current, I_D (A) -10 ---- Vgs = 15V -15 -20 -25 -30 -3 -2 0 -4 Drain-Source Voltage, V_{DS} (V) Figure 10 3rd quadrant characteristics

at T_{.1} = 25°C

Typical SiC MOSFET

Figure 14. 3rd Quadrant Characteristic at 25 °C

Low VF & Qrr eliminates need for separate anti-parallel diode

What controls switching speeds

- Turn-on di/dt can be slowed by MOSFET Rgon in a TO247-3L, where L_s de-biases the $V_{gs(MOS).}$ So higher V_{gs} values can speed up di/dt.
- The upper limit to the di/dt is set by the fact that the JFET Vth is fixed, and the JFET experiences a $V_{GS(JFET)}=-V_{DS(MOS)}$ that is fixed. The internal inductance and the $R_{GJFET}^{*}(C_{gsJ}+C_{oss(MOS)})$ sets this maximum di/dt.
- Once the MOSFET has turned off enough to pinch-off the JFET, dV/dt is largely regulated by the C_{gdJ} * R_{GJFET} . However, slowing the MOSFET drain node using a external R_{goff} can influence the turn-off rate, essentially slowing the gate voltage applied to the JFET at turn-off.

Measured Turn-on Energy Loss, di/dt and dv/dt with 600V Inductive Load. FWD: UJC1206K

USCi Confidential

Measured Turn-off Energy Loss, di/dt and dv/dt with 600V Inductive Load Condition. FWD: UJC1206K

USCi Confidential

Comparing G2, G3 cascodes and SiC MOSFETs in half-bridge

UJ3C120080K3S Rgon = 1 Ω, Rgoff = 20 Ω, Eon = 107 uJ didt = 3.7 A/ns, dvdt = 85 V/ns

C2M080120D Rgon = 5 Ω, Rgoff = 5 Ω, Eoff = 115 uJ didt = 2.3 A/ns, dvdt = 60 V/ns

UJ3C120080K3S Half-bridge Vgs drive +15V/-5V Rgon=1ohm, Rgoff=20ohm, 125C

UJ3C120080K3S Half-bridge Vgs drive +15V/-5V Rgon=2.3ohm, Rgoff=8ohm, 125C

UJ3C switching characteristics 80m, 1200V

Figure 18 Clamped inductive switching energy vs. drain current at T J = 150°C Figure 20 Clamped inductive switching turn-off energy vs. R_{G,EXT_OFF}

Figure 21 Clamped inductive switching energy vs. junction temperature at I_D = 20A

UJ3C switching characteristics 30m, 650V

Figure 18 Clamped inductive switching energy vs. drain current at T J = 150°C

Figure 21 Clamped inductive switching energy vs. junction temperature at I_D = 50A

Measured Qrr of UJ3C120040K3S vs UF3C120040K4S

40

USCi Соппиенца

UF3C120080K4S Half-Bridge Switching Energies

UF3C120080K4S Switching Waveforms 800V, Tj = 25°C, Vgs = -5V/+12V

Rg_on = 21Ω Rg_off = 47Ω Turn-on di/dt =1995A/us

ZVS circuits LLC, PSFB

- Since turn-on is no longer critical, it should generally be possible to use a single Rgoff.
- Depending on current 5-20ohm works well
- Sufficient to limit gate drive to 0-12V no benefit with higher Vgs, no benefit with negative gate drive
- A bead can still be used if currents are high, or if a low Rgoff is required to minimize delay time at high frequencies

650V cascode – Totem Pole PFC

Uniquely qualified for use in CCM Totem Pole PFC due to excellent Body Diode

Test Conditions

- Top switch is the freewheeling device
- VDS, ID are measured for the bottom switch
- VGS: +15V turn on, -5V turn off
- Rgon 10Ω, Rgoff 10Ω
- VDS 800V
 - ID: 25A
 - Temperature: 120°C both top & bottom switch
 - Snubber: 10Ω, 220pF
 - When adding a snubber, switching loss includes both device and snubber loss.
 - DUT: UF3C120080K4S

 The measurement on the left shows more VDS ringing at turnoff transient than turn-on.

 Therefore the snubber should be placed on the bottom switch.

Time: 400ns/div ID: 20A/div VGS: 10V/div VDS: 200V/div

Guideline for snubber design

Time: 20ns/div ID: 10A/div VDS: 200V/div

The Cadd is a ceramic capacitor rated at 220pF. At 800V the ceramic capacitor capacitance is around 150pF which is also close to Cs = 148pF. Hence, Cs is the same as Cadd.

The VDS ringing frequency is **100MHz** (f0). Adding a Cadd (220pF) reduces frequency to 42MHz (f1).

Therefore the circuit stray capacitance CLK is 47.1pF.

$$CLK = \frac{Cadd}{(f0/f1)^2 - 1}$$

Therefore the circuit leakage inductance LLK is 54nH.

$$LLK = \frac{1}{(2\pi f 0)^2 CLK}$$

If damping factor $\zeta = 1.6$, Rs = 10 Ω

$$Rs = \frac{1}{2\zeta} \sqrt{\frac{LLK}{CLK}}$$

If cutoff frequency fc = 68.5MHz, Cs = 220pF. $Cs = \frac{1}{2\pi Rsfc}$

Trade off's using a snubber

Time: 20ns/div ID: 10A/div VDS: 200V/div

With Snubber Eon* = 371uJ, Eoff* = 147uJ

The Eon*, Eoff* with snubber are the total loss of device and snubber.

- Cascode turn-off ringing may be reduced by high Rgoff but this leads to long delay times
- Quick and easy solution to use fast SiC devices in existing designs without causing excessive ringing

Customer Reference: Micropower

- Phase shifted Full bridge
 - Need for an excellent body diode
- 10kW battery charger
- Technological partnership
- RESULTS:
 - 30% <u>higher</u> output power with UnitedSiC FET in same dimensions
 - <u>Easy</u> to replace Si-FET replacement using <u>standard</u> gate drive
 - 1.5% higher efficiency

UnitedSiC FET advantage in PSFB

- Previous technologies include IGBT, super-junction MOSFET, and SiC MOSFET
- IGBTs have very high turn-off switching power loss, slow-switching reverse diode
- Super-junction MOSFETs have larger chip size, slow-switching reverse diode
- SiC MOSFET has larger chip size, asymmetric gate drive (-5 to 18 V typically)
- UnitedSiC FET is the best performing PSFB switch

Battery Charger topology

A non controlled traditional battery charger (rectifier) provides a simple direct **AC/DC conversion**

Disadvantages of this solution are:

- Low efficiency
- Large physical size
- Long charge times
- Charge depends on changes in the mains supply (with overcharge danger in the final charge phase)

In modern battery chargers these disadvantages are solved with an **indirect AC/DC** conversion, by passing through an intermediate DC/DC conversion.

This is the usual method of operation for the SMPS (Switching Mode Power Supply) at high power. This solution gives a good performance for minimum costs and physical dimensions using switches more faster and powerful (modern technology).

The main advantages of this solution are:

- High efficiency
- Reduced dimensions
- Short charge times
- · Charge independent from the changes of the mains supply
- Electronic control that provides the desired charge curve

Source: http://www.energicplus.com/content/manuals/Manual-NG1-single-phase-high-frequency-charger.pdf

