GALLIUM SEMICONDUCTOR

GTH2e-2425300P

50V,2.4- 2.5GHz, 300W GaN HEMT

FEATURES

Operating Frequency Range: 2.4 – 2.5 GHz

• Operating Drain Voltage: 50V

Maximum Output Power (Psat): 300W

Air Cavity Plastic Package (ACP)

Input internally pre-matched F0 + 2F0

Suitable for CW applications

ACP-800 4L Air Cavity Plastic

DESCRIPTION

The GTH2e-2425300P is a 300W (P3dB) pre-matched discrete GaN-on-SiC HEMT which operates from 2.4 to 2.5 GHz on a 50V supply rail. The wide bandwidth of the GTH2e-2425300P makes it suitable for Industrial Scientific Medical, RF Energy and CW operations.

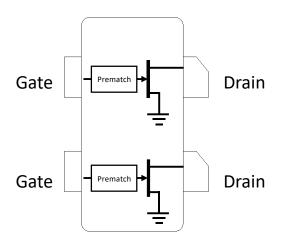
The device is housed in an industry-standard ACP-800 4L Air Cavity Plastic package. Lead-free and RoHS compliant.

Typical Performances 1 Tone pulsed CW (10% duty cycle, 100µs width),

- (1) Optimum Peak Power at 2.5dB in compression in Class AB Bias
- (2) Optimum Peak Efficiency at 2.5dB in compression in Class AB Bias
- (3) Optimum Peak Power at 2.5dB in compression in Class C Bias
- (4) Optimum Peak Efficiency at 2.5dB in compression in Class C Bias

For 1 section of the device, Vds=50V, TA = 25°C

Frequency (MHz)	Pout (dBm)	Pout (Watt)	Gain (dB)	Eff (%)
2400	54.0 ⁽¹⁾	253 ⁽¹⁾	17.1 ⁽²⁾	70.0(2)
2500	54.3 ⁽¹⁾	268 ⁽¹⁾	17.3 ⁽²⁾	70.8(2)
2500	54.2 ⁽³⁾	260 ⁽³⁾	14.9 ⁽⁴⁾	76.3 ⁽⁴⁾


50V,2.4- 2.5GHz, 300W GaN HEMT

ABSOLUTE MAXIMUM RATINGS(1, 2)

Parameter	Rating	Symbols and Units
Drain Source Voltage	150	V _{DS} (V)
Gate Source Voltage	-8 to +2	V _{GS} (V)
Operating Voltage	55	V _{dsq} (V)
Junction Temperature	+225	T _{JUNC} (°C)
Storage Temperature	-65 to +150	T _{STORAGE} (°C)
Case Operating Temperature	-40 to +105	T _{CASE} (°C)

- 1. Exceeding any of these limits may cause permanent damage to this device or seriously limit the life time (MTTF)
- 2. GalliumSemi does not recommend sustained operation above maximum operating conditions.

BLOCK DIAGRAM

ELECTRICAL SPECIFICATIONS: TA = 25°C

Parameter	Min.	Тур.	Max.	Symbols and Units	Test conditions
Frequency Range	2400		2500	MHz	
DC Characteristics					
Drain Source Breakdown Voltage	150			V _{BDSS} (V)	
Drain Source Leakage Current		tbd		I _{DLK} (mA)	Vgs = -8V, $Vds = 50V$
Gate Threshold Voltage	-3.4		-1.5	V _{GS} (V)	Vds = 50V
Operating Conditions					
Gate Bias Voltage		-2.5		V _{GSQ} (V)	
Drain Voltage		50		V _{DSQ} (V)	
Quiescent Drain Current		600		I _{DQ} (mA)	

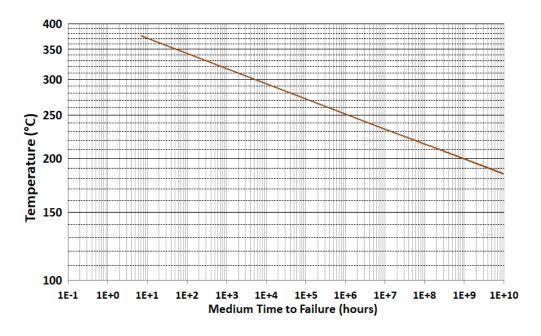
50V,2.4- 2.5GHz, 300W GaN HEMT

RF ELECTRICAL SPECIFICATIONS: $T_A = 25^{\circ}C$, VDS = 50 V,IDQ = 100 mA, Freq= 2470MHz Note: Performance⁽¹⁾ in GalliumSemi Production Test Fixture, 50 Ω system

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes	
Small Signal Gain	Gss		17		dB		
Power Gain	G _{SAT}		14		dB	Pulse (100 μsec,	
Saturated Drain Efficiency	DEff _{SAT}		75		%	— 10% Duty Cycle)	
Saturated Output Power	P _{SAT}		55		dBm		
Ruggedness Output						Pulse (100 μsec, 20% Duty Cycle)	
nismatch	Ψ	VSWR = 20:1, all angles		ngles		No damage or shift in performances	

^{1. 1} Tone Pulse CW, pulse width 100us, duty cycle 20%

50V,2.4- 2.5GHz, 300W GaN HEMT


THERMAL AND RELABILITY INFORMATION -CW (1, 2): T_c = 85°C

Rth(°C/W)= TBD

Parameter	Test condition	Value	Units
Channel Temperature, Tch	_	172	°C
Rth	129 W	0.67	°C/W
MTTF		> 1E10	Hrs

^{1.}Using 5um thermal grease - 4W/m-K.

^{2.}Thermal Resistance using Finite Element Analysis (FEA) simulation, calibrated with Infrared measurement on surface temperature.

50V,2.4- 2.5GHz, 300W GaN HEMT

LOADPULL MEASUREMENT FOR 1 SECTION OF THE DEVICE,

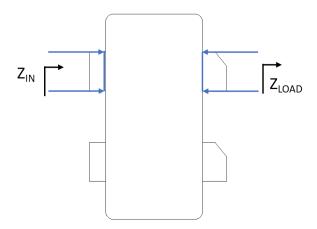
Typical Performances 1 Tone pulsed CW (10% duty cycle, 100µs width)

- (1) 50V, Class AB Bias
- (2) 50V, Class C Bias

	For Optimum Peak Power @ 2.5dB Compression						
Freq-MHz	Zin_F0	ZI_F0	Pout_W	Pout-dBm	Gain_dB	Eff-%	
2400	15.4 – 0.4j ⁽¹⁾	2.1 – 2.8j ⁽¹⁾	253 ⁽¹⁾	54.0 ⁽¹⁾	15.8 ⁽¹⁾	64 ⁽¹⁾	
2500	7.4 - 1.5j ⁽¹⁾	1.8 – 3.7j ⁽¹⁾	266 ⁽¹⁾	54.3 ⁽¹⁾	15.4 ⁽¹⁾	62 ⁽¹⁾	
2500	17.1 + 3.7j ⁽²⁾	$2.2 - 4.2j^{(2)}$	261 ⁽²⁾	54.2 ⁽²⁾	13.3(2)	68(2)	

For Optimum Peak Efficiency @ 2.5dB Compression

Freq-MHz	Zin_F0	ZI_F0	Pout_W	Pout-dBm	Gain_dB	Eff-%
2400	15.4 – 0.4j ⁽¹⁾	$2.0 - 1.8j^{(1)}$	173 ⁽¹⁾	52.3 ⁽¹⁾	17.1 ⁽¹⁾	70.0 ⁽¹⁾
2500	4.6 - 1.0j ⁽¹⁾	$2.1 - 2.1j^{(1)}$	174 ⁽¹⁾	52.4 ⁽¹⁾	17.3 ⁽¹⁾	70.8(1)
2500	13.6 – 3.1j ⁽²⁾	1.9 – 2.5j ⁽²⁾	198 ⁽²⁾	53.0 ⁽²⁾	14.9 ⁽²⁾	76.3 ⁽²⁾


LOADPULL MEASUREMENT NOTES

Source is internally Prematched in the package and therefore non sensitive to external matching, Load impedance @ 2nd Harmonic are set to 10 Ohms.

Z_{LOAD}: Measured Impedance presented to the output of the device in the reference plane

Z_{IN}: Measured input Impedance at the input of the device in the reference plane

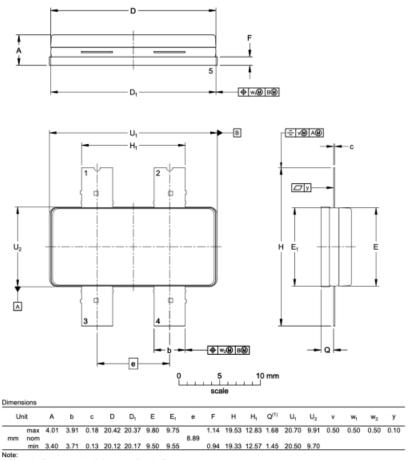
Impedance Reference Plane

Raw data and full Loadpull measurement report available at request: sales@galliumsemi.com

50V,2.4- 2.5GHz, 300W GaN HEMT

GAN HEMT BIASING SEQUENCE

To turn the transistor ON


- 1. Set V_{GS} to -5V
- 2. Turn on V_{DS} to normal operation voltage (50V)
- 3. Slowly increase V_{GS} to set I_{DQ} current to target value.
- 4. Apply RF power

To turn the transistor OFF

- 1. Turn the RF power off
- 2. Decrease V_{GS} to -5V
- 3. Turn off V_{D.} Wait a few seconds for drain capacitor to discharge
- 4. Turn off V_{GS}

50V,2.4- 2.5GHz, 300W GaN HEMT

PACKAGE DIMENSIONS

PIN CONFIGURATION

Pin	Input/Output
1, 2	RF Output / Drain Voltage
3, 4	RF Input / Gate Voltage
5 (flange)	Ground

DEVICE LABEL

Line 1:	COMPANY NAME: GALLIUM				
Line 2:	PART NUMBER - WAFER #				
Line 3:	AA:	Assembly Code			
	YYWW:	Assembly Date Code			
	R:	Reserved code			

^{1.} Dimension Q is measured at 0.1 mm away from the flange.
2. Ringframe and/or ringframe glue shall not overhang at the side of the flange.

50V,2.4- 2.5GHz, 300W GaN HEMT

HANDLING PRECAUTIONS

Parameter	Symbol	Class	Test Methodology
ESD-Human Body Model	HBM	Class 1A (250 V)	ANSI/ESDA/JEDEC Standard JS-001
ESD - Charged Device Model	CDM	Class C3 (1500 V)	ANSI/ESDA/JEDEC Standard JS-002
MSL – Moisture Sensitivity Level	MSL	MSL 1	IPC/JEDEC Standard J-STD-020

ROHS COMPLIANCE

Gallium Semiconductor's Policy on EU RoHS available online:

https://www.galliumsemi.com/_files/ugd/3748d3_1107b9788f9845f78f45d424097c4c97.pdf

50V,2.4- 2.5GHz, 300W GaN HEMT

REVISION HISTORY

Revision	Date	Datasheet Status	Modifications
А	04/20/2023	Advanced	Init
В	08/18/2023	Advanced	Updated Rth and Test Data

CONTACT INFORMATION

To request latest information and samples, please contact us at:

Web: https://www.galliumsemi.com/

Email: sales@galliumsemi.com

IMPORTANT NOTICE

Even though Gallium Semiconductor believes the material in this document to be reliable, it makes no guarantees as to its accuracy and disclaims all responsibility for any damages that may arise from using its contents. Contents in this document are subject to change at any time without prior notice. Customers should obtain and validate the most recent essential information prior to making orders for Gallium Semiconductor products. The information provided here or any use of such material, whether about the information itself or anything it describes, does not grant any party any patent rights, licenses, or other intellectual property rights. Without limiting the generality of the aforementioned, Gallium Semiconductor products are neither warranted nor approved for use as crucial parts in medical, lifesaving, or life-sustaining applications, or in any other applications where a failure would likely result in serious personal injury or death.

GALLIUM SEMICONDUCTOR DISCLAIMS ANY AND ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO SUCH PRODUCTS, WHETHER BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE.